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Abstract

There is a growing body of evidence that the step-to-step variations present in human walking are related to the biomechanics of the
locomotive system. However, we still have limited understanding of what biomechanical variables influence the observed nonlinear gait
variations. It is necessary to develop reliable models that closely resemble the nonlinear gait dynamics in order to advance our knowledge
in this scientific field. Previously, Goswami et al. [1998. A study of the passive gait of a compass-like biped robot: symmetry and chaos.
International Journal of Robotic Research 17(12)] and Garcia et al. [1998. The simplest walking model: stability, complexity, and scaling.
Journal of Biomechanical Engineering 120(2), 281-288] have demonstrated that passive dynamic walking computer models can exhibit a
cascade of bifurcations in their gait pattern that lead to a deterministic nonlinear gait pattern. These computer models suggest that the
intrinsic mechanical dynamics may be at least partially responsible for the deterministic nonlinear gait pattern; however, this has not been
shown for a physical walking robot. Here we use the largest Laypunov exponent and a surrogation analysis method to confirm and
extend Garcia et al.’s and Goswami et al.’s original results to a physical passive dynamic walking robot. Experimental outcomes from our
walking robot further support the notion that the deterministic nonlinear step-to-step variations present in gait may be partly governed
by the intrinsic mechanical dynamics of the locomotive system. Furthermore the nonlinear analysis techniques used in this investigation

offer novel methods for quantifying the nature of the step-to-step variations found in human and robotic gait.

© 2008 Elsevier Ltd. All rights reserved.

Keywords: Walking; Gait; Locomotion; Nonlinear; Variability; Chaos; Robotics

1. Introduction

Human locomotion is typically described as having a
periodic movement pattern. For example, it can be readily
observed that the legs oscillate to-and-fro with a limit cycle
behavior that is similar to the pendulum motions of a
clock. Any variations from this periodic pattern have
traditionally been considered to be instabilities in the
coupling of the components locomotive system, i.e., noise
(Hausdorff et al., 1995; Riley and Turvey, 2002). However,
recent investigations have indicated that the step-to-step
variations that are present in human gait may not be
instabilities; rather these variations may have a determi-
nistic structure that is dependent on the biomechanics of
the locomotive system (Hausdorff et al., 1995; Dingwell
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and Cusumano, 2000; Buzzi et al., 2003; Miller et al., 2006;
Stergiou et al., 2004). Currently, we still have limited
insight on what variables are actually governing the
observed step-to-step variations.

Previous insights on the origin of the nonlinear dynamics
of physical systems (i.e., pendulums, magnetic ribbons,
lasers, etc.) have come from the analysis of simplified
mathematical models that are sufficiently close to the
behavior of the real system (Glass, 2001). Full and
Koditschek (1999) referred to such simple models as
templates. In the case of locomotion, the template has all
the joint complexities, muscles and neurons removed.
Recently, passive dynamic walking models have proven
to be a useful template for the exploration of nonlinear gait
dynamics (Garcia et al., 1998; Goswami et al., 1998; Kurz
and Stergiou, 2005, 2007a, b). These models consist of an
inverted double pendulum system that captures the
dynamics of the swing and stance phase of gait (Fig. 1A).
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Fig. L.
(1998). (B) Cascade of bifurcations in the walking model’s gait as the ram
gait pattern than is chaotic.

The model maintains a stable walking pattern by introdu-
cing energy into the system via a slightly sloped walking
surface. As the walking surface angle is increased, there is a
cascade of bifurcations in the model’s gait pattern that
leads to a deterministic nonlinear gait pattern (Fig. 1B)
(Goswami et al., 1998; Garcia et al., 1998).

This passive dynamic framework has provided a
theoretical basis for building walking robots that have
improved our understanding of stable and efficient walking
in humans (McGeer, 1990; Collins et al., 2005). Histori-

(A) Passive dynamic walking model that has a nonlinear gait pattern. Further details on the model’s equations of motion are found in Garcia et al.

p angle is inclined. These gaits eventually converge to a deterministic nonlinear

cally, the analysis of the gait patterns of these walking
robots has focused on the periodic nature of the gait
pattern. Any variations in the walking robot’s gait were
considered to be instabilities in the mechanical coupling,
i.e., noise. Passive dynamic walking computer models
suggest that these variations may not be instabilities, but
may arise from the inherent dynamics of the locomotive
system (Garcia et al., 1998; Goswami et al., 1998). This
notion has yet to be validated in a physical passive dynamic
walking robot. Verification of a deterministic nonlinear
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gait pattern in a physical passive dynamic walking robot
will provide a new theoretical foundation for under-
standing and modeling the deterministic step-to-step
variations found in human locomotion. Here we hypothe-
size that a simple passive dynamic walking robot can
exhibit a deterministic nonlinear gait pattern.

2. Walking robot design

We constructed a simple passive dynamic walking robot
that was based on the original work of Tedrake et al.
(2004). The robot had two rigid legs, a pin joint between
the hips, and wooden feet that were curved in the sagittal
and frontal planes. The legs were 0.41m long and
assembled using pre-manufactured aluminum extrusions
(80/20, Inc., Columbia City, IN). The spacing between the
legs was 0.19m, and the radius of curvature in the frontal
and sagittal planes were approximately 0.15 and 0.25m,
respectively (Fig. 2).

The curvature of the feet in the frontal plane allowed for
the walking robot to avoid collisions at mid-stance by
slightly rocking to the side. Walking was initiated by
positioning the robot at the top of a treadmill (Biodex,
RTM400, Shirley, NY) and giving it a slight push sideways.
The treadmill used in this investigation had a 2 HP motor
with 4Q-pulse width modulation control that allowed it to
operate at low speeds with high accuracy. During locomo-
tion, the robot would rock over the stance leg, and the
opposite leg would swing forward taking a step down
the treadmill. At foot-strike, the robot would rock onto
the opposite foot for the next step of the gait cycle.
We evaluated five stable long-term locomotion trials
(40-100 steps per trial) from the robot as it walked on
the treadmill that operated in reverse (e.g., downhill) at a

Fig. 2. Passive dynamic walking robot developed for this investigation.

speed of 0.04m/s. The sagittal plane leg kinematics of
the walking robot’s gait were collected at 60 Hz using a
three-dimensional motion capture system (ViconPeak,
Centennial, CO).

3. Nonlinear analysis measures
3.1. State space reconstruction

In order to evaluate the nature of the step-to-step
variations in the gait pattern, we used standard embedding
techniques from nonlinear dynamics to reconstruct the
state space of the walking robot’s locomotive attractor
from the leg angle time series (Kantz and Schreiber, 2004).
The nonlinear analysis techniques used time-lagged copies
of the original leg angle time series to reconstruct the
state vector that defined the walking robot’s locomotive
attractor. Eq. (1) presents the reconstructed state vector
where y(f) was the reconstructed state vector, x(z) was the
original time series data, dg was the dimension of the
vector, and x(z+ T;) was time delay copies of x(7):

(@) = [x(6),x(t + T),x(t + 27T),...,x(t + (dg — )T)]. (1)

The time delay (7;) for creating the state vector was
determined by estimating when information about the state
of the dynamic system at x(¢f) was different from the
information contained in its time-delayed copy using an
average mutual information algorithm (Abarbanel, 1996).
Eq. (2) presents the average mutual information algorithm
where T was the time delay, x(f) was the original data,
x(t+ T) was the time delay data, P(x(¢), x(¢t+ 7)) was the
joint probability for measurement of x(f) and x(t+7),
P(x(r)) was the probability for measurement of x(¢), and
P(x(t+T)) was the probability for measurement of
x(t+T):

P(x(t),x(t+ T))
Lioery = Yy P(x(®), x(1 + T))log, POPG T
2)

Average mutual information was iteratively calculated
for various time delays, and the selected time delay was the
first local minimum of the iterative process (Fig. 3). This
selection was based on previous investigations that have
determined that the time delay at the first local minimum
contains sufficient information about the dynamics of the
system to reconstruct the state vector from the measured
time series (Abarbanel, 1996).

3.2. Embedding dimension

We calculated the number of embedding dimensions of
the leg angle time series in order to unfold the recon-
structed locomotive attractor in an appropriate state space.
To unfold the state space, we used a global false nearest
neighbors algorithm to systematically inspect x(¢), and its
neighbors in various dimensions (e.g., dimension = 1, 2,
3,..., etc.). The appropriate embedding dimension was
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Fig. 3. Exemplary average mutual information curve from the walking
robot’s gait. The first local minimum of the curve was used to select a time
lag for reconstructing the locomotive attractor from the leg angle time
series.

identified when the distance between neighboring points in
the state space no longer changed with the addition of
further dimensions of the state vector. For example, the
global false nearest neighbors algorithm compares the
points in the attractor at a given dimension dg

y(&) = [x(2),x(t + T),x(t + 27),...,x(t + (dg — 1), T)] (3)

YN = XN@, NN+ 1), XN+ 27), .
xWN(t + (dg — DT, 4)

where y(f) was the current point being considered, and
yN(#) was the nearest neighbor. If the distance between
the points at the next dimension (e.g., dg+) was greater
than the distance calculated at the current dimension (e.g.,
dg), then the point was considered a false neighbor and
further embeddings were necessary to unfold the attractor.
The percentage of false nearest neighbors was calculated at
higher dimensions until the percent nearest neighbors
dropped to zero (Fig. 4). The embedding dimension that
had zero percent false nearest neighbors was used to
reconstruct the walking robot’s locomotive attractor in an
appropriate state space.

3.3. Lyapunov exponent

The largest Lyapunov exponent was calculated to
determine the nonlinear structure of the reconstructed
attractor. Lyapunov exponents quantify the average rate of
separation or divergence of points in the attractor over
time (Kantz and Schreiber, 2004; Abarbanel, 1996;
Rosenstein et al., 1993). A periodic system will have no
divergence of points in the attractor, while a nonlinear
system will have some divergence between two neighboring
points as time progresses. Fig. SA presents a hypothetical

Percent False Nearest Neighbors

1 2 3 4 5 6 7 8
Embedding Dimension

Fig. 4. Exemplary global false nearest neighbors curve from the walking
robot’s gait. The necessary embedding dimensions for unfolding the
locomotive attractor is apparent when the percent false nearest neighbors
drops to zero.
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Fig. 5. (A) Hypothetical reconstructed nonlinear attractor. (B) Zoomed-in
window of the reconstructed attractor where s(0) is the initial Euclidean
distance between two neighboring points in the attractor and s(i) is the
Euclidean distance between the two points i times later.

reconstructed nonlinear attractor, and Fig. 5B is an
expanded view of a portion of the reconstructed attractor.
Fig. 5B depicts two neighboring points in the reconstructed
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attractor that are separated by an initial distance of d(0).
As time progresses, the two points diverge rapidly and are
separated by a distance of d(i). The Lyapunov exponent is a
measure of the logarithmic divergence of the pairs of
neighboring points in the attractor over time.

Eq. (5) is the algorithm for determining the Lyapunov
exponent where A is the Lyapunov exponent, Af is the
sampling period, M is the number of points in the attractor
considered, d0) is the initial Euclidean distance between
the j neighbors, and di) it is the Euclidean distance
between the j neighbors i times later (Rosenstein et al.,
1993):

. 1
i) = i-At

1 &40
M_i;mdj(o)]. (5)

The largest Lyapunov exponent was estimated by
plotting the divergence curve which consists of average
rate of divergence of neighboring points in the attractor as
a function of time (Fig. 6). The largest Lyaponov exponent
of the walking robot was estimated by using a least squares
algorithm to calculate the slope of the linear region of the
divergence curve that exists between zero and the second
stride (Fig. 6) (Rosenstein et al., 1993).

We used a pseudo periodic surrogation (PPS) algorithm
to determine if the calculated Lyapunov exponent was
related to a deterministic or stochastic process (Miller
et al., 2006; Small and Tse, 2002). The PPS algorithm
generates a surrogate of the original time series that
preserves the inherent periodic components while destroy-
ing the nonlinear structure. The structure of the surrogate
followed the same vector field as the original time series,
but was contaminated with noise. If fluctuations in the
original time series have deterministic features, these

<In (d(i)/d(0))>
o
[6)]

o

_1 L L L 1 1 1
0 2 4 6 8 10 12

Time (# Strides)

Fig. 6. Exemplary divergence curve from the walking robot’s gait. The
abscissa of the divergence curve was normalized by multiplying it by the
average stride frequency of the walking robot. The largest Lyapunov
exponent is estimated from the slope of a line fit to the linear region of the
divergence curve that exists from zero to second stride.

features will be destroyed in the surrogate. If the variations
in the time series are random noise, the surrogate will be no
different from the original time series. The largest
Lyapunov exponents were calculated for the original time
series (Aorig) and the surrogate (Ag,,) to test if the nonlinear
structure of the original time series was noise or a
deterministic nonlinear pattern. The nonlinear variations
in the walking robot’s gait are deterministic if the largest
Lyapunov exponent of the original time series is statisti-
cally different from the largest Lyapunov exponent of the
surrogate time series. Statistical analysis was conducted at
an alpha level of 0.05.

4. Experimental results

Fig. 7 depicts an exemplary leg angle time series (Fig. 7A)
and projection of the walking robot’s reconstructed
attractor (Fig. 7B). Inspection of Fig. 7A demonstrates that
the step-to-step variations in the leg angle were not strictly
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Fig. 7. (A) Exemplary leg angle time series from the robot walking on the
slightly sloped and moving treadmill. (B) Projection of the walking robot’s
reconstructed locomotive attractor.
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periodic; rather they had a stationary nonlinear pattern.
The time lag used to reconstruct the walking robot’s
locomotive attractors from the walking trials was 164+0.8
data samples, and the number of embedding dimensions was
four. Ag,r was significantly (p = 0.03) different from /g
(Asurr = 1.14£0.2; Aopig = 0.63+0.2). This indicated that the
nonlinear variations in the walking robot’s gait pattern were
deterministic, and related to the intrinsic dynamics of the
walking robot.

5. Discussion

Our results provide further support for the notion that a
passive dynamic walking robot can exhibit a deterministic
nonlinear gait. Since the walking robot was completely
passive (i.e., no control system), the deterministic step-to-
step variations were likely a result of the mechanical
coupling and passive dynamics of the walking robot. In
human locomotion, we cannot confirm if the nonlinear
variations arise from the neurological or mechanical
components of the neuromuscular system; however, the
results presented here imply that the passive dynamics may
play some role in the observed deterministic nonlinear
pattern. Our future investigations are directed towards
further exploring how the mechanics of the locomotive
system may influence the step-to-step nonlinear variations.

Although the treadmill used in this investigation was
designed by the manufacture to operate accurately at low
speeds, we cannot eliminate the possibility that minute
fluctuations in belt speed may have influenced or con-
tribute to the deterministic structure apparent in the
gait cycle of the robot. However, the outcomes of our
experiment are similar to what has been previously
presented in the original passive dynamic computer
simulations of Garcia et al. (1998) and Goswami et al.
(1998). Since it has been well demonstrated that passive
dynamic walking computer models have a deterministic
nonlinear gait pattern, we suggest that the deterministic
fluctuations seen in the gait pattern of our robot were due
to the mechanics of the system rather than the treadmill.

The passive dynamic walking robot presented in this
investigation was highly simplified compared to the human
locomotive system and walked much slower than a human.
This limits our ability to definitively extending the results
presented here to human walking. However, it has been
previously demonstrated that through this simplification
that passive dynamic walking robots have advanced our
insight on the biomechanics of human locomotion (Collins
et al., 2005). We argue that this is the case here, where our
simplified walking robot has provided further verification
that deterministic variations in the gait pattern can arise
from the mechanical constructs of the locomotive system.

Previous investigations have indicated that a positive
Lyapunov exponent may be a signature of a chaotic system
(Abarbanel, 1996). A chaotic system’s behavior appears
to be random and unstable because of the exponential
separation of neighboring points in the attractor. However,

unlike random systems, a chaotic system is stable and
has deterministic variations. The difficulty in using the
largest Lyapunov exponent to quantify the presence
of a chaotic pattern is that both random and chaotic
systems have a positive Lyapunov exponent due to the
presence of the rapid separation of neighboring points in
the attractor (Kantz and Schreiber, 2004). We checked the
nature of the divergence of the neighboring points in the
attractor using the PPS algorithm. Our surrogation tests
indicated that the fluctuation in the walking robot’s gait
were not random instabilities in the walking robot’s
dynamics. The presence of a positive Lyapunov exponent
and a significant difference in the attractor dynamics from
the surrogate suggests that our walking robot has a chaotic
pattern (Miller et al., 2006; Small and Tse, 2002). Previous
results from passive dynamic computer models have
indicated that the basin of attraction for chaotic gait is
quite large and possibly more stable because multiple types
of gaits are available in the attractor (Garcia et al., 1998).
Therefore, walking with a chaotic gait may provide the
locomotive system with greater flexibility, because it may
have the ability to adapt to external perturbations and
changes in the walking environment. However, this
theoretical concept still need to be further tested and
verified.

In our previous walking computer models, we have
demonstrated that hip joint actuations applied during the
swing phase and toe-off impulses applied at the end of
the stance phase could be used to transition to stable gaits
that were embedded within the chaotic attractor (Kurz and
Stergiou, 2005, 2007a,b). We inferred that this transition
flexibility was due to the fact that multiple points found in
a chaotic attractor have both unstable and stable manifolds
(Abarbanel, 1996; Shinbrot et al., 1993; Ott et al., 1990;
Starrett and Tagg, 1995). Small perturbations that are
applied along the unstable manifold can be used to drive
the system to stable trajectories that are embedded in the
chaotic attractor. This property has been well demon-
strated in other physical systems such as pendulums and
lasers (Abarbanel, 1996; Shinbrot et al., 1993; Starrett and
Tagg, 1995). The ability to transition to various stable
patterns embedded in the chaotic attractor demonstrates
ultimate flexibility and may provide the locomotive system
a means to adapt to the ever changing walking environ-
ment. Since our walking robot appears to have a chaotic
gait, it is possible that it may also be able to demonstrate
the ability to transition to stable gaits embedded within the
chaotic attractor. Our future research is directed toward
testing this theoretical concept by developing walking
robots that use joint actuation to transition the locomotive
system to gaits embedded within the chaotic attractor.

6. Conclusions
Our results support the original work of Garcia et al.

(1998) and Goswami et al. (1998) and further validate the
notion that a deterministic nonlinear gait is possible in
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a passive dynamic walking robot. Our methods were novel
in that we utilized the largest Lyapunov exponent and a
surrogate analysis method to derive these conclusions.
Further use of these nonlinear tools may provide addi-
tional insight on the nature of the step-to-step fluctuations
present in human and robotic locomotion. The results
presented in this investigation imply that the gait pattern of
the walking robot may have a chaotic pattern. Our future
research will explore if the results from our previous
simulations can be extended to walking robots to improve
stability in unstable walking environments.
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